If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2=4.9t+12
We move all terms to the left:
4.9t^2-(4.9t+12)=0
We get rid of parentheses
4.9t^2-4.9t-12=0
a = 4.9; b = -4.9; c = -12;
Δ = b2-4ac
Δ = -4.92-4·4.9·(-12)
Δ = 259.21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4.9)-\sqrt{259.21}}{2*4.9}=\frac{4.9-\sqrt{259.21}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4.9)+\sqrt{259.21}}{2*4.9}=\frac{4.9+\sqrt{259.21}}{9.8} $
| 132+x+x^2=0 | | n+18=42 | | 6/7x-2+2/7x=8 | | 8(x-7)+44=7x-2 | | 5(u+3))=50 | | X+7=3(4x-3) | | N/10+7=13e | | 4(x+5)+15=4x-4 | | 8r=7r-10 | | 6+(3-x)~2=1 | | 4(2y+1)=2(12-2y) | | b+18=7 | | -8m-2=34 | | b=18=7 | | 2x+2/11+3x-3/11=1/11 | | 2b=211 | | x^2+10x+9=2x | | 132=139+x | | 4(6x-8)+2=(-x+3) | | 2(x-7)+9=2x-5 | | 10/11*s=6 | | 1=3(x-1)+4-2x | | x/11x143=39 | | 3x+23-x+23=4 | | 4x+2x=4x-8 | | g-5=121/3 | | 10/8+h=9/3-2 | | -3q^2+7q-2=0 | | s6+29=101 | | h*9/11=5 | | 8=18-y | | N=145y+2788 |